TRAFFIC AND PARKING IMPACT ASSESSMENT OF THE PROPOSED CHILD CARE CENTRE AT 5 MARY STREET, NORTHMEAD

Address: Shop 7, 720 Old Princes Highway Sutherland NSW 2232 Postal: P.O Box 66 Sutherland NSW 1499

Telephone: +61 295217199
Web: www.mclarentraffic.com.au
Email: admin@mclarentraffic.com.au

Division of RAMTRANS Australia ABN: 45067491678 RPEQ: 19457

Transport Planning, Traffic Impact Assessments, Road Safety Audits, Expert Witness

Development Type: Child Care Centre

Site Address: 5 Mary Street, Northmead

Prepared for: Janssen Designs
Document reference: 220918.01FA

Status	Issue	Prepared By	Checked By	Approved By	Date
Draft	A	KL / MF	LS		1 August 2023
Final	A	MF	LS		10 August 2023

Please be aware that all information and material contained in this report is the property of McLaren Traffic Engineering. The information contained in this document is confidential and intended solely for the use of the client for the purpose for which it has been prepared and no representation is made or if to be implied as being made to any third party. Any third party wishing to distribute this document in whole or in part for personal or commercial use must obtain written confirmation from McLaren Traffic Engineering prior to doing so. Failure to obtain written permission may constitute an infringement of copyright and may be liable for legal action.

TABLE OF CONTENTS

1 INTRODUCTION 1
1.1 Description and Scale of Development 1
1.2 State Environmental Planning Policy (Transport and Infrastructure) 2021 1
1.3 Site Description 1
1.4 Site Context 2
2 EXISTING TRAFFIC AND PARKING CONDITIONS 3
2.1 Road Hierarchy 3
2.1.1 Mary Street 3
2.1.2 Windsor Road 3
2.1.3 Windermere Avenue 3
2.1.4 Margaret Street 3
2.2 Existing Traffic Management 4
2.3 Existing Traffic Environment 5
2.3.1 Existing Road Performance 5
2.4 Public Transport. 8
2.5 Future Road and Infrastructure Upgrades 8
3 PARKING ASSESSMENT 9
3.1 Council Parking Requirement 9
3.1.1 Car Parking Demand Analysis 10
3.2 Parking for People with Disabilities 11
3.3 Bicycle \& Motorcycle Parking Requirements 11
3.3.1 The Hills DCP 2012 Bicycle and Motorcycle Requirements 11
3.3.2 Draft Parramatta DCP 2023 Bicycle and Motorcycle Requirements 11
3.4 Servicing \& Loading 13
3.5 Car Park Design \& Compliance 13
4 TRAFFIC ASSESSMENT 14
4.1 Traffic Generation 14
4.2 Traffic Assignment 14
4.3 Traffic Impact 16
5 CONCLUSION 18

1 INTRODUCTION

M^{C} Laren Traffic Engineering was commissioned by Janssen Designs to provide a traffic and parking impact assessment of the proposed Child Care Centre at 5 Mary Street, Northmead as depicted in Annexure A.

1.1 Description and Scale of Development

The proposed development has the following characteristics relevant to traffic and parking:

- Proposed child care centre accommodating 90 children and 14 staff with the following split:
- 20 children between $0-2$ years old (5 staff applied at a rate of 1 per 4 children);
- 20 children between 2-3 years old (4 staff applied at a rate of 1 per 5 children);
- 50 children between 3-6 years old (5 staff applied at a rate of 1 per 10 children);
- An at-grade parking area with vehicular access via a proposed two-way driveway from Mary Street, accommodating a total of 24 car parking spaces including:
- 10 visitor car parking spaces including one (1) accessible car parking space;
- 14 staff car parking spaces.

1.2 State Environmental Planning Policy (Transport and Infrastructure) 2021

The proposed development does not qualify as a traffic generating development with relevant size and/or capacity under Clause 2.122 of the SEPP (Transport and Infrastructure) 2021. Accordingly, formal referral to Transport for NSW (TfNSW) is unnecessary and the application can be assessed by Parramatta City Council officers accordingly.

1.3 Site Description

The subject site is zoned R2 - Low Density Residential under the Parramatta Local Environmental Plan 2023 and is currently occupied by a single dwelling. The site has a single frontage to Mary Street to the south.

The site is generally surrounded by low to medium density residential developments with the Hills School is located approximately 300 m to the east of the site.

1.4 Site Context

The location of the site is shown on an aerial photo and a street map in Figure 1 and Figure 2 respectively.

FIGURE 1: SITE CONTEXT - AERIAL PHOTO

FIGURE 2: SITE CONTEXT - STREET MAP

2 EXISTING TRAFFIC AND PARKING CONDITIONS

2.1 Road Hierarchy

The road network servicing the site has characteristics as described in the following subsections.

2.1.1 Mary Street

- Unclassified LOCAL Road;
- Approximately 10 m wide carriageway facilitating one (1) traffic flow lane in each direction and kerbside parking on both sides of the road;
- Signposted $50 \mathrm{~km} / \mathrm{h}$ speed limit;
- $40 \mathrm{~km} / \mathrm{h}$ speed limit applies during school zone hours in front of and to the east of the site's frontage;
- Unrestricted kerbside parking permitted along both sides of the road.

2.1.2 Windsor Road

- TfNSW Classified STATE ARTERIAL Road (No. 184);
- Approximately 13 m wide carriageway generally facilitating two (2) traffic flow lanes in each direction;
- An AM / PM contraflow operates south of the signalised intersection of Churchill Drive / Windsor Road whereby one additional lane is provided in the southbound direction during the AM peak hour period, resulting in the loss of one northbound lane during the AM peak period;
- The kerbside lane in the southbound direction is linemarked as "BUS LANE AM" from approximately 120 m south from the intersection of Churchill Drive / Windsor Road.
- Signposted $60 \mathrm{~km} / \mathrm{h}$ speed limit;
- Clearway restrictions apply on both sides of the road at all times.

2.1.3 Windermere Avenue

- Unclassified COLLECTOR Road;
- Approximately 10 m wide carriageway facilitating one (1) traffic flow lane in each direction and kerbside parking on both sides of the road;
- Signposted $50 \mathrm{~km} / \mathrm{h}$ speed limit;
- Generally, unrestricted kerbside parking is permitted along both sides of the road.

2.1.4 Margaret Street

- Unclassified LOCAL Road;
- Approximately 8 m wide carriageway facilitating two-way traffic flow and kerbside parking on both sides of the road;
- Default $50 \mathrm{~km} / \mathrm{h}$ speed limit;
- Generally unrestricted kerbside parking is permitted along both sides of the road;
- Signposted "No Parking During Sporting Fixtures" restrictions apply along the eastern side of the carriageway.

2.2 Existing Traffic Management

- Priority controlled intersection of Mary Street / Margaret Street;
- Priority controlled intersection of Windsor Road / Mary Street;
- Priority controlled intersection of Windsor Road / Windermere Street;
- Signposted restrictions to vehicles exceeding 3 tonnes from accessing Windermere Street from Windsor Road;
- "No Right Turn" restrictions apply at the south Windsor Road approach between the hours of 6AM - 10AM \& 3PM - 7PM Monday to Friday, buses excepted.
- Priority controlled intersection of Anderson Road / Margaret Street;
- Signalised intersection of Windsor Road / Anderson Road;
- Signposted "No Left Turn, Vehicles under 6m Excepted" restriction applies at the south Windsor Road approach;
- Signposted "No Right Turn" restrictions apply at the north Windsor Road approach;
- Signposted "Left Turn on Red Permitted After Stopping" at the NBC Sports Club access driveway approach to the intersection;
- Signposted restrictions to vehicles exceeding 3 tonnes from accessing Anderson Road.

2.3 Existing Traffic Environment

Turning movement count traffic surveys were conducted at the intersections of Windsor Road / Mary Street, Mary Street / Margaret Street, William Street / Windermere Avenue, Anderson Road / Margaret Street and Windsor Road / Anderson Road from 7:00am to 9:30am and 2:30pm to 6:00pm on Tuesday 6 June 2023 representing a typical operating weekday. The full survey results are shown in Annexure B for reference.

2.3.1 Existing Road Performance

The performance of the surrounding intersections under the existing traffic conditions has been assessed using SIDRA INTERSECTION 9.1. Table 1 summarises the resultant intersection performance data, with full SIDRA results reproduced in Annexure C.

The following considerations have been undertaken to ensure a realistic calibrated model:

- Consideration to the TCS Plan for signalised intersection Windsor Road / Anderson Road (Annexure D);
- A review of the phase length and cycle times based upon video footage which is reproduced in Annexure E for reference:
- Output cycle and phase lengths fall within observed cycle and phase lengths.
- Validation of the model using approach queue lengths for the southern approach of Windsor Road with consideration to the following input modifications:
- Observed average queue lengths along Windsor Road and Anderson Street.

TABLE 1: EXISTING INTERSECTION PERFORMANCES (SIDRA INTERSECTION 9.1)

Intersection	Peak Hour	Degree of Saturation ${ }^{(1)}$	Average Delay ${ }^{(2)}$ (sec/veh)	Level of Service ${ }^{(3)(4)}$	Control Type	Worst Movement
EXISTING PERFORMANCE						
Windsor Rd/ Mary St	AM	1.03	$\begin{gathered} 1.8 \\ \text { (Worst: >70) } \end{gathered}$	NA (Worst: F)	Give Way	RT from Windsor Rd
	PM	1.03	$\begin{gathered} 0.8 \\ \text { (Worst: >70) } \end{gathered}$	NA (Worst: F)		RT from Windsor Rd
Margaret St / Mary St	AM	0.05	3.9 (Worst: 4.9)	NA (Worst: A)	Give Way	RT from Mary St
	PM	0.05	3.5 (Worst: 4.9)	NA (Worst: A)		RT from Mary St
Windermere Ave / Mary St / William St	AM	0.05	2.5 (Worst: 5.1)	NA (Worst: A)	Give Way	RT from Mary St / William St
	PM	0.05	2.1 (Worst: 5.3)	NA (Worst: A)		RT from Mary St / William St
Anderson Rd/ Margaret St	AM	0.06	2.9 (Worst: 5.1)	NA (Worst: A)	Give Way	RT from Margaret St
	PM	0.05	2.7 (Worst: 5.1)	NA (Worst: A)		RT from Anderson Rd
Anderson Rd / Windsor Rd	AM	0.78	9.6	A	Signals	RT from Windsor Rd
	PM	0.81	9.7	A		RT from Anderson Rd

Notes:
(1) The Degree of Saturation is the ratio of demand to capacity for the most disadvantaged movement.
(2) The average delay is the delay experienced on average by all vehicles. The value in brackets represents the delay to the most disadvantaged movement.
(3) The Level of Service is a qualitative measure of performance describing operational conditions. There are six levels of service, designated from A to F, with A representing the best operational condition and level of service F the worst. The LoS of the intersection is shown in bold, and the LoS of the most disadvantaged movement is shown in brackets.
(4) No overall Level of Service is provided for Give Way and Stop controlled intersections as the low delays associated with the dominant movements skew the average delay of the intersection. The Level of Service of the worst approach is an indicator of the operation of the intersection, with a worse Level of Service corresponding to long delays and reduced safety outcomes for that approach.

As shown, most of the relevant intersections are currently performing at a high level of efficiency, with an overall or worst movement Level of Service "A" condition in both the AM \& PM peak hour periods. The Level of Service "A" performance is characterised by low approach delays and spare capacity. However, the intersection of Windsor Road / Mary Street is currently operating with a worst movement Level of Service " F " condition in both the AM \& PM peak hour periods. The worst movement Level of Service "F" performance is indicative of high delays and low to nil capacity remaining.

It should be noted that in some circumstances, with intersections controlled by give way and stop signs, simply examining the highest individual average delay can be misleading. The size of the movement with the highest average delay per vehicle should also be taken into account. Thus, for example, an intersection where all movements are operating at a level of service "A", except one which is at level of service " F ", may not necessarily define the intersection level of service as "F" if that movement is of a relatively small traffic volume. That is, longer delays to a small number of vehicles may not justify upgrading an intersection unless a safety issue were also involved.

The worst movement causing the "F" Level of Service is the right turn movement from Mary Street to Windsor Road northbound. In the AM and PM peak hour periods, the observed peak hour volumes of this movement where nil (0) and one (1) vehicle, respectively. The remaining movements in the intersection operate with a movement Level of Service of "A".

In comparison to the above volumes, the left turn movement from Mary Street had higher volumes of eight (8) and 12 vehicles in the AM and PM peak hour periods, respectively. This suggests that the drivers at the intersection are aware of the high delays required to turn right at this intersection associated with the high two-way flows along Windsor Road and find alternative routes. Indeed, the signalised intersection of Windsor Road / Anderson Road is accessible by vehicles in Mary Street via Margaret Street and Anderson Road, where there are noted to be a high proportion of vehicles turning right from Anderson Road in both the AM and PM peak hour volumes. Accordingly, it is considered likely that drivers from the surrounding residential area travel via this intersection in order to travel northbound along Windsor Road.

Based upon TfNSW crash data from their website, there are no existing cluster of accidents at the intersection of Windsor Road / Mary Street. Therefore, the low right turn volumes from Mary Street at this intersection should not define the operation of the intersection as unacceptable and consideration to intersection upgrades is not required.

2.4 Public Transport

The subject site has access to the existing bus stops (ID: 215235 \& ID: 215236) which are located approximately 270 m walking distance northwest and 220 m walking distance to the southwest of the site respectively on Windsor Road. The bus stops collectively service existing bus routes 600 (Hornsby to Parramatta), 601 (Rouse Hill Station to Parramatta via Hills Showground), 603 (Rouse Hill Station to Parramatta via Glenhaven) and 614X (Crestwood to City QVB Express Service) provided by Hillsbus Bus Services.

There are no nearby train stations within an accessible walking distance of the site.
The location of the site subject to the surrounding public transport network is shown in Figure 3.

FIGURE 3: PUBLIC TRANSPORT NETWORK MAP

2.5 Future Road and Infrastructure Upgrades

From Parramatta City Council Development Application tracker and website, it appears that there are no future planned road or public transport changes that will affect traffic conditions within the immediate vicinity of the subject site.

3 PARKING ASSESSMENT

3.1 Council Parking Requirement

Reference is made to The Hills Development Control Plan 2012 Part C Section 1 Parking (hereafter referred to as THDCP 2012) which designates the following parking rates applicable to the proposed development:

2.1 General Parking Requirements

Table 1 Required Minimum Car Parking Provisions

Child Care Centres\#	1 space per employee plus 1 space per 6 children enrolled for visitors and/or parent parking

Also see 2.1.1. (e)
\# Set down areas are to be provided for these land uses - refer to section 2.6.

2.1.1. General

(e) Car parking for child care centres must be situated in a convenient location, allowing for safe movement of children to and from the centre.

Table 2 presents the parking requirements of the proposal according to THDCP 2012 parking requirements.

TABLE 2: THDCP 2012 PARKING REQUIREMENTS

Land Use	Scale	Rate	Spaces Required	Spaces Provided
Child Care Centre	90 Children	1 per 6 children	15	10
	14 Staff	1 per staff member	14	14
TOTAL	-	-	$\mathbf{2 9}$	$\mathbf{2 4}$

As shown, strict application of THDCP 2012 results in a required provision of 29 car parking spaces (with 15 for visitor use and 14 for staff use). The proposed plans detail the provision of $\mathbf{2 4}$ car parking spaces (including 10 for visitor use and 14 for staff use), resulting in a numerical shortfall of five (5) visitor spaces from THDCP 2012 requirements.

However, the City of Parramatta Council recently released a draft Parramatta Development Control Plan for public exhibition which is expected to prevail over The Hills DCP when it comes into effect. This DCP will consolidate five DCPs that currently apply across the City of Parramatta LGA, including The Hills DCP 2012. The relevant parking rates provided in the Draft Parramatta Development Control Plan 2023 (DPDCP 2023) are reproduced below for reference:

6.2 Parking and Vehicular Access

Table 6.3.1-Minimum car parking rates

Child care centres 1 space for every 4 children in attendance

Table 3 presents the parking requirements of the proposal according to the Draft Parramatta Development Control Plan 2023.

TABLE 3: DPDCP 2023 PARKING REQUIREMENTS

Land Use	Scale	Rate	Spaces Required	Spaces Provided
Child Care Centre	90 Children	1 per 4 children	23	24
TOTAL	-	-	23	$\mathbf{2 4}$

As shown, the Draft Parramatta DCP requires a minimum provision of $\mathbf{2 3}$ car parking spaces when it comes into effect. This is a lower parking requirement than that currently required by THDCP 2012. The proposed plans detail the provision of 24 car parking spaces, exceeding DPDCP 2023 parking requirements by one (1) space. It is expected that the new DCP will come into effect imminently (September 2023 according to the Project Timeline on City of Parramatta Council's website) and accordingly, the shortfall from current THDCP 2012 requirements can be disregarded in this instance. In any case, an assessment of expected visitor parking demand is provided in Section 3.1.1 below.

3.1.1 Car Parking Demand Analysis

In order to assess the peak demand of the child care centre parent car parking, conventional queuing theory has been employed. The results are reproduced within Annexure F with relevant details and assumptions provided below:

- An 8-minute 16 -seconds service time for each parking space (i.e. a parent uses a parking space for approximately 8-minutes 16-seconds to drop off/ pickup their child);
- This is sourced from TfNSW - Roads and Maritime Services Validation Trip Generation Survey Child Care Centres report (September 2015);
- Afternoon peak hour traffic generation of 63 trips ($32 \mathrm{in}, 31$ out) is used as outlined within Section 4.1.

By applying conventional queuing theory, it has been determined that nine (9) car spaces can adequately accommodate the $98^{\text {th }}$ percentile parent demand in the PM peak period. The proposed plans depict ten (10) spaces dedicated for child care centre visitor use, exceeding the peak demand for the proposed use and complying with AS2890.1:2004 requirements.

3.2 Parking for People with Disabilities

THDCP 2012 does not outline car parking rates for people with disabilities applicable to child care centre developments. However, the DPDCP 2023 states that "The number of accessible car parking spaces to be provided as prescribed in Table D3.5 of the Building Code of Australia". It is noted that the reference to Table D3.5 refers to the 2019 version of the Building Code of Australia (BCC) which has since been superceded by Section D4D6 within the 2022 update to the National Construction Code (NCC).

As such, reference is made to the Section D4D6 of the Building Code of Australia (BCA) as part of the National Construction Code 2022 (NCC) which categorises a child care centre as a Class 9b building and therefore requires the provision of car parking for people with disabilities at a rate of:

Class 9b 1 space for every 50 carparking spaces or part thereof.

In accordance with the BCA requirements, one (1) car parking space for people with disabilities is to be provided. The proposed car parking layout details the provision of one (1) car parking space designed in accordance with AS2890.6:2022, complying with BCA requirements.

3.3 Bicycle \& Motorcycle Parking Requirements

3.3.1 The Hills DCP 2012 Bicycle and Motorcycle Requirements

The Hills Council DCP 2012 does not require the provision of bicycle or motorcycle parking for a child care centre with a 24 space car park. Accordingly, no bicycle / motorcycle parking facilities have been provided, thus satisfying THDCP 2012 requirements.

3.3.2 Draft Parramatta DCP 2023 Bicycle and Motorcycle Requirements

Reference is made to the Draft Parramatta Development Control Plan 2023 (DPDCP 2023), Part 6.3 Bicycle Parking which states the following bicycle parking requirements applicable to the proposed development:
"If a particular land use is not addressed in Table 6.4.1, bicycle parking is to be provided in accordance with one of the following, whichever is the greater:

- in accordance with Austroads (2008) Guide to Traffic Management - Part 11: Parking (AGTM11-08), or
- at a rate of 0.2 spaces per car parking space that would normally be required."

It also states that:
"Unless otherwise specified, provision for motorcycle parking should be provided at a rate of 1 space per 50 car parking spaces, or part thereof."

The referenced "Austroads (2008) Guide to Traffic Management" document from the DCP has been updated to Austroads Guide to Traffic Management Part 11: Parking Management Techniques, Edition 3 published April 2020. Table 5.3 of this updated Guide includes an example of a bicycle parking provision for child care centres from Town of Cambridge, a Council in Western Australia. The requirement in Table 5.3 of this guide for a child care centre is one (1) long-stay bicycle space.

Using the other bicycle parking rate provided requires the provision of five (5) bicycle spaces (rounded from 4.6), based on the DPDCP 2023 car parking requirement of 23 spaces (23 x $0.2=4.6$). The proposed development proposes four (4) bicycle parking spaces within the basement, which exceeds the Austroads parking requirement by three (3) spaces however represents a numerical shortfall of one (1) space from the DPDCP 2023 parking rate.

With consideration for the area surrounding the site, there are no dedicated on or off-road bicycle facilities which is likely to result in travelling via bicycle to/from the centre as being undesirable for users of the child care centre. It is considered that this would be particularly undesirable for parents to children, to whom maintaining the safety of children during travel would be of the utmost importance. It is similarly expected that demand for bicycle parking from staff members would be low. Therefore, it is considered unlikely that the site will have any significant demand for bicycle parking. With consideration for the above, the proposed shortfall of one (1) space from the DPDCP 2023 bicycle parking rate requirement is considered acceptable.

Reference is made to the Draft Parramatta Development Control Plan 2023, 6.2 Parking and Vehicular Access which states the following motorcycle parking requirements applicable to the proposed development:
C. 53 Unless otherwise specified, provision for motorcycle parking should be provided at a rate of 1 space per 50 car parking spaces, or part thereof.

In accordance with the above rate, the proposed development requires the provision of one (1) motorcycle parking space. The proposed development proposes nil (0) motorcycle parking spaces, representing a numerical shortfall of one (1) space from the DPDCP 2023 requirements. It should be noted that child care centre parents/carers would not drop-off/pick-up children using a motorcycle as it is unlawful for a child under the age of 8 to be a passenger on a motorcycle in NSW. If a staff member intended on using a motorcycle to travel to/from the child care centre, the motorcycle could be stored in a staff car parking space due to the provision of one (1) car parking space per staff member in accordance with the THDCP 2012 requirements. As such, there is no need for a dedicated motorcycle space at the subject child care centre and the proposed shortfall is considered acceptable.

3.4 Servicing \& Loading

The THDCP 2012 and DPDCP 2023 do not outline any loading / servicing requirements applicable to a child care centre. It is expected that all deliveries will be undertaken within the proposed car parking area outside peak drop off / pick up times, under a plan of management if necessary. A van (standard B99 design vehicle) or similar can be accommodated within the car parking area, utilising vacant visitor spaces. This is common practice for child care centres and will not noticeably affect operation of the site. It is reiterated that deliveries and other arrivals of similar nature are low in frequency and can be easily managed.

It is expected that the site will be serviced by Council's waste collection services from the Mary Street frontage, similar to waste collection arrangements for the residential dwelling that currently exists onsite.

3.5 Car Park Design \& Compliance

The car parking layout as depicted in Annexure A, has been assessed to achieve the relevant clauses and objectives of AS2890.1:2004, AS2890.2:2018 and AS2890.6:2022. Swept path testing has been undertaken and the results are presented within Annexure G for reference.

The proposed car parking and vehicular access design achieves the following:

- Minimum 5.5 m wide two-way driveway facilitating access to Mary Street;
- Minimum 5.8 m wide parking aisles;
- Minimum 6.1 m wall-to-wall width along ramp;
- Compliant ramp grades not exceeding 25% for private developments and no grade change greater than 12.5\%;
- Minimum 5.4 m long, 2.6 m wide spaces for parents;
- Minimum 5.4 m long, 2.4 m wide accessible car parking space with adjacent associated 5.4 m long, 2.4 m wide shared space;
- Minimum headroom of 2.2 m for general circulation and 2.5 m headroom clearance provided over accessible parking areas;
- A $2.0 \mathrm{~m} \times 2.5 \mathrm{~m}$ pedestrian sight triangle on the exit side of the driveway at the property boundary which is to be kept clear of obstructions exceeding 600 mm in height for the life of the development.

Whilst the plans have been assessed to comply with the relevant standards, it is usual and expected that a design certificate be required at the Construction Certificate stage to account for any changes following the development application.

4 TRAFFIC ASSESSMENT

The impact of the expected traffic generation levels associated with the subject proposal is discussed in the following sub-sections.

4.1 Traffic Generation

Traffic generation rates for the relevant land uses are provided in the RTA Guide to Traffic Generating Developments (2002) and recent supplements as adopted by Transport for NSW (TfNSW) and are as follows:

3.11.3 Child care centres

Long-day care
7.00-9.00am $\quad 0.8$ peak vehicle trips per child
$2.30-4.00 \mathrm{pm} \quad 0.3$ peak vehicle trips per child
4.00-6.00pm $\quad 0.7$ peak vehicle trips per child

The resulting AM and PM peak hourly traffic generation is summarised in Table 4.
TABLE 4: ESTIMATED TRAFFIC GENERATION

Use	Scale	Peak	Generation Rate	Trips ${ }^{(1)}$
Long-day care	90 Children	AM	0.8 per child	72 $(36 ~ i n, 36 ~ o u t) ~$
		PM	0.7 per child	63 $(32 \mathrm{in}, 31$ out $)$

Notes:
(1) $50 / 50$ inbound/outbound split.

As shown, the expected traffic generation associated with the proposed development is in the order of $\mathbf{7 2}$ vehicle trips in the AM peak period ($36 \mathrm{in}, 36$ out) and $\mathbf{6 3}$ vehicle trips in the PM peak period (32 in, 31 out).

4.2 Traffic Assignment

The road network, traffic surveys and locations of residential areas surrounding the site have been assessed and the following traffic assignment has been assumed for all traffic to and from the site:

- 30% to/from the north via Windsor Road;
- 20% to/from the east via Windermere Avenue;
- 20% to/from the south via Anderson Road;
- 30% to/from the west via Windsor Road.

FIGURE 4: TRIP DISTRIBUTION

4.3 Traffic Impact

The traffic generation outlined in Section 4.1 \& 4.2 above has been added to the existing traffic volumes recorded. SIDRA INTERSECTION 9.1 was used to assess the intersections performance. The purpose of this assessment is to compare the existing intersection operations to the future scenario under the increased traffic load. The results of this assessment are shown in Table 5.

TABLE 5: INTERSECTION PERFORMANCE (SIDRA INTERSECTION 9.1)

Intersection	Peak Hour	Degree of Saturation ${ }^{(1)}$	Average Delay ${ }^{(2)}$ (sec/veh)	Level of Service ${ }^{(3)(4)}$	Control Type	Worst Movement
EXISTING PERFORMANCE						
Windsor Rd/ Mary St	AM	1.03	$\begin{gathered} 1.8 \\ \text { (Worst: >70) } \end{gathered}$	NA (Worst: F)	Give Way	RT from Windsor Rd
	PM	1.03	$\begin{gathered} 0.8 \\ \text { (Worst: >70) } \end{gathered}$	NA (Worst: F)		RT from Windsor Rd
Margaret St / Mary St	AM	0.05	3.9 (Worst: 4.9)	NA (Worst: A)	Give Way	RT from Mary St
	PM	0.05	3.5 (Worst: 4.9)	NA (Worst: A)		RT from Mary St
Windermere Ave / Mary St / William St	AM	0.05	2.5 (Worst: 5.1)	NA (Worst: A)	Give Way	RT from Mary St / William St
	PM	0.05	2.1 (Worst: 5.3)	NA (Worst: A)		RT from Mary St / William St
Anderson Rd / Margaret St	AM	0.06	2.9 (Worst: 5.1)	NA (Worst: A)	Give Way	RT from Margaret St
	PM	0.05	2.7 (Worst: 5.1)	NA (Worst: A)		RT from Anderson Rd
Anderson Rd / Windsor Rd	AM	0.78	9.6	A	Signals	RT from Windsor Rd
	PM	0.81	9.7	A		RT from Anderson Rd
FUTURE (POST-DEVELOPMENT) PERFORMANCE						
Windsor Rd / Mary St	AM	1.03	$\begin{gathered} 1.8 \\ \text { (Worst: >70) } \end{gathered}$	NA (Worst: F)	Give Way	RT from Windsor Rd
	PM	1.03	$\begin{gathered} 0.8 \\ \text { (Worst: >70) } \end{gathered}$	NA (Worst: F)		RT from Windsor Rd

Margaret St / Mary St	AM	0.07	3.9 (Worst: 5.2)	NA (Worst: A)	Give Way	RT from Mary St
	PM	0.06	3.6 (Worst: 5.2)	NA (Worst: A)		RT from Mary St
Windermere Ave / Mary St / William St	AM	0.05	2.6 (Worst: 5.1)	NA (Worst: A)	Give Way	RT from Mary St / William St
	PM	0.05	2.3 (Worst: 5.2)	NA (Worst: A)		RT from Mary St / William St
Anderson Rd / Margaret St	AM	0.09	3.3 (Worst: 5.1)	NA (Worst: A)	Give Way	RT from Anderson Rd
	PM	0.07	3.1 (Worst: 5.1)	NA (Worst: A)		RT from Anderson Rd
Anderson Rd / Windsor Rd	AM	0.81	13.3	A	Signals	RT from Windsor Rd
	PM	0.92	10.6	A		RT from Anderson Rd

NOTES: Refer to Table 1.
As shown, the above intersections all retain the same overall and worst movement level service under future conditions with minimal delays and additional capacity, indicating that there will be no adverse impact on the existing road network as a result of the proposed development. Whilst the Windsor Road / Mary Street intersection has a worst movement Level of Service "F", the worst movements come from turning from Mary Street onto Windsor Road and the right turn from Windsor Road into Mary Street. Realistically, parents and staff will take the fastest routes to and from the site through the intersection of Windsor Road / Anderson Road. This will not affect the intersection of Windsor Road / Mary Street.

5 CONCLUSION

In view of the foregoing, the subject Child Care Centre proposal at 5 Mary Street, Northmead (as depicted in Annexure A) is fully supportable in terms of its traffic and parking impacts. The following outcomes of this traffic and parking impact assessment are relevant to note:
a) The proposal includes the provision of $\mathbf{2 4}$ car parking spaces within a proposed carpark, comprised of $\mathbf{1 4}$ for staff use and 10 for visitor use, resulting in a shortfall of five (5) visitor car parking spaces from the requirements of The Hills Development Control Plan 2012 (THDCP 2012).
b) The shortfall of five (5) visitor car parking spaces from THDCP 2012 requirements is supported by queuing analysis which shows that nine (9) visitor spaces can adequately accommodate the $98^{\text {th }}$ percentile parent demand in the PM peak period. As such, the provision of ten (10) visitor car parking spaces exceeds the peak demand for the proposed use. Furthermore, it is noted that the proposed provision of 24 parking spaces satisfies the requirements of the Draft Parramatta Development Control Plan 2023 (DPDCP 2023) which is expected to come into effect during September 2023, according to the Project Timeline on the City of Parramatta Council's website.
c) THDCP 2012 does not require the provision of bicycle and motorcycle parking facilities for a child care centre. As such, nil (0) motorcycle parking spaces have been provided in plans. Four (4) bicycle parking spaces have been detailed in plans.
d) The parking areas of the site have been assessed against the relevant sections of AS2890.1:2004, AS2890.2:2018 and AS2890.6:2022 and has been found to satisfy the objectives of each standard. Swept path testing has been undertaken and the results are reproduced within Annexure G.
e) The traffic generation of the proposed development has been estimated to be some 72 trips in the AM peak period ($36 \mathrm{in}, 36$ out) and 63 trips in the PM peak period (32 in, 31 out). The impacts of the traffic generation have been modelled using SIDRA INTERSECTION 9.1, indicating that there will be no adverse impact to the performance of the intersections as a result of the generated traffic.

ANNEXURE A: PROPOSED PLANS

 (4 SHEETS)

$\bigcirc \frac{\text { SECTION A - }}{1.100 \text { @ Al }}$
1:100@Al

ANNEXURE B: TRAFFIC SURVEY DATA (5 SHEETS)

TURNING MOVEMENT SURVEY
Intersection of Windsor Rd and Mary St, Northmead

GPS

GPS	$-33.778954,150.998531$
Date:	Tue 06/06/23
Weather:	Fine
Suburban:	Northmead
Customer:	McLaren

Survey Period	AM:	7:00 AM-9:30 AM
	PM:	2:30 PM-6:00 PM
Traffic	AM:	7:00 AM-8:00 AM
Peak	PM:	4:00 PM-5:00 PM

All Vehicles

Time		North Approach Windsor R			East Approach Mary St			pouth Approach Windsor R			Hourly Total	
Period Start	Period End	U	SB	L	U	R	L	U	R	NB	Hour	Peak
7:00	7:15	0	490	0	0	0	2	0	0	279	3233	Peak
7:15	7:30	0	524	2	0	0	2	0	0	284	3231	
7:30	7:45	0	526	1	0	0	2	0	0	317	3226	
7:45	8:00	0	503	0	0	0	2	0	0	299	3156	
8:00	8:15	0	444	2	0	0	1	0	0	322	3166	
8:15	8:30	0	493	2	0	0	6	0	0	306	3182	
8:30	8:45	0	471	4	0	2	9	0	0	290	3174	
8:45	9:00	0	495	4	0	0	16	0	0	299		
9:00	9:15	0	493	3	0	1	4	0	0	284		
9:15	9:30	0	521	2	0	0	5	0	0	271		
14:30	14:45	0	344	2	0	0	1	0	0	403	3420	
14:45	15:00	0	393	2	0	2	4	0	0	444	3594	
15:00	15:15	0	406	2	0	0	15	0	0	459	3637	
15:15	15:30	0	416	3	0	1	8	0	0	515	3674	
15:30	15:45	1	443	2	0	0	5	0	0	473	3683	
15:45	16:00	0	400	6	0	1	5	0	0	476	3689	
16:00	16:15	0	416	3	0	0	5	0	0	495	3756	Peak
16:15	16:30	0	442	4	0	0	0	0	0	506	3726	
16:30	16:45	0	407	5	0	1	2	1	0	514	3741	
16:45	17:00	0	432	4	0	0	4	0	0	515	3704	
17:00	17:15	0	409	8	0	0	4	0	0	468	3655	
17:15	17:30	0	475	3	0	0	1	0	0	488		
17:30	17:45	1	413	7	0	0	3	0	0	469		
17:45	18:00	0	459	3	0	0	2	0	0	442		

Peak Time		North Approach Windsor R			East Approach Mary St			pouth Approach Windsor R			Peak total
Period Start	Period End	U	SB	L	U	R	L	U	R	NB	
7:00	8:00	0	2043	3	0	0	8	0	0	1179	3233
16:00	17:00	0	1697	16	0	1	11	1	0	2030	3756

Note: Site sketch is for illustrating traffic flows. Direction is indicative only, drawing is not to scale and not an exact streets configuration.

TURNING MOVEMENT SURVEY
Intersection of Mary St and Margaret St, Northmead
GPS

GPS	$-33.779130,150.999659$
Date:	Tue 06/06/23
Weather:	Fine
Suburban:	Northmead
Customer:	McLaren

North:	N / A
East:	Mary St
South:	Margaret St
West:	Mary St

Survey Period	AM:	7:00 AM-9:30 AM
	PM:	$2: 30$ PM-6:00 PM
Traffic	AM:	8:15 AM-9:15 AM
Peak	PM:	$2: 45$ PM-3:45 PM

All Vehicles

Time		East Approach Mary St			Fouth Approach Margaret S			West Approach Mary St			Hourly Total	
Period Start	Period End	U	WB	L	U	R	L	U	R	EB	Hour	Peak
7:00	7:15	0	2	6	0	5	0	0	0	0	55	
7:15	7:30	0	2	5	0	3	0	0	1	1	67	
7:30	7:45	0	2	8	0	7	0	0	0	1	99	
7:45	8:00	0	2	5	0	5	0	0	0	0	111	
8:00	8:15	0	0	14	0	8	1	0	0	2	146	
8:15	8:30	1	5	17	0	18	1	0	2	0	150	Peak
8:30	8:45	0	5	5	0	11	5	1	3	0	125	
8:45	9:00	0	13	16	0	11	3	0	4	0		
9:00	9:15	0	3	14	0	7	2	0	2	1		
9:15	9:30	0	3	7	0	6	1	1	1	0		
14:30	14:45	0	0	5	0	11	1	0	0	2	125	
14:45	15:00	0	6	7	0	10	0	0	0	2	135	Peak
15:00	15:15	0	14	18	0	6	1	0	2	0	134	
15:15	15:30	0	9	16	0	12	0	0	2	1	121	
15:30	15:45	0	3	11	0	11	2	0	1	1	103	
15:45	16:00	0	4	6	0	6	2	0	3	3	95	
16:00	16:15	1	5	8	0	11	0	0	1	2	101	
16:15	16:30	0	0	12	0	6	0	0	3	1	89	
16:30	16:45	0	1	10	0	3	2	0	4	1	90	
16:45	17:00	0	3	10	0	12	1	0	2	2	94	
17:00	17:15	0	2	2	0	2	2	0	6	2	85	
17:15	17:30	0	0	7	0	12	1	0	3	0		
17:30	17:45	0	3	6	0	9	0	0	5	2		
17:45	18:00	0	2	2	1	13	0	0	0	3		

Peak Time		East Approach Mary St			Fouth Approach Margaret S			West Approach Mary St			$\begin{aligned} & \hline \text { Peak } \\ & \text { total } \\ & \hline \end{aligned}$
Period Start	Period End	U	WB	L	U	R	L	U	R	EB	
8:15	9:15	1	26	52	0	47	11	1	11	1	150
14:45	15:45	0	32	52	0	39	3	0	5	4	135

Note: Site sketch is for illustrating traffic flows. Direction is indicative only, drawing is not to scale and not an exact streets configuration. Graphic
$\frac{\text { Graphic }}{\text { Total }}$
Light
Heavy

TRANS TRAFFIC SURVEY

$\overline{\text { ONV.GL }}$
$\overline{\overline{\text { ONV.GL }}}$
$\overline{\overline{O N V} \cdot G L}$
TURNING MOVEMENT SURVEY
Mafficsurvey.com.au

(even
(soo
Intersection of Windermere Ave and William St, Northme
GPS

GPS	$-33.778237,151.003137$
Date:	Tue 06/06/23
Weather:	Fine
Suburban:	Northmead
Customer:	McLaren

North:	N/A
East:	Windermere Ave
South:	William St
West:	Windermere Ave

Survey Period	AM:	7:00 AM-9:30 AM
	PM:	$2: 30$ PM-6:00 PM
Traffic Peak	AM:	8:00 AM-9:00 AM
	PM:	$3: 15$ PM-4:15 PM

All Vehicles

Time		st Approach Windermere ASouth Approach William Stst Approach Windermere A									Hourly Total	
Period Start	Period End	U	WB	L	U	R	L	U	R	EB	Hour	Peak
7:00	7:15	1	6	5	0	1	3	0	3	7	110	
7:15	7:30	1	2	6	0	1	0	1	2	12	130	
7:30	7:45	0	9	3	1	1	3	0	3	11	159	
7:45	8:00	0	10	2	0	0	3	1	3	9	171	
8:00	8:15	0	11	5	1	1	1	0	12	15	189	Peak
8:15	8:30	0	8	11	0	3	8	0	8	16	176	
8:30	8:45	0	14	7	1	2	3	0	7	9	149	
8:45	9:00	0	8	9	0	2	3	0	12	12		
9:00	9:15	0	2	5	0	1	4	0	3	18		
9:15	9:30	0	9	1	0	0	4	1	5	7		
14:30	14:45	0	4	2	0	2	2	0	2	7	124	
14:45	15:00	0	7	7	0	1	4	0	5	7	147	
15:00	15:15	0	6	1	0	2	4	0	0	5	148	
15:15	15:30	0	13	1	0	0	11	1	13	17	183	Peak
15:30	15:45	0	5	4	1	3	8	0	2	19	176	
15:45	16:00	1	9	2	0	2	6	0	4	8	168	
16:00	16:15	0	12	10	0	1	5	0	4	21	178	
16:15	16:30	0	13	2	0	1	5	0	8	20	167	
16:30	16:45	0	5	1	0	1	7	0	4	16	157	
16:45	17:00	0	12	0	0	1	6	0	6	17	160	
17:00	17:15	0	7	2	0	4	2	0	7	20	174	
17:15	17:30	0	9	1	0	1	8	0	0	20		
17:30	17:45	0	9	0	0	4	5	0	5	14		
17:45	18:00	0	24	2	0	4	8	0	6	12		

Peak Time		st Approach Windermere ASouth Approach William Stst Approach Windermere A									Peak total
Period Start	Period End	U	WB	L	U	R	L	U	R	EB	
8:00	9:00	0	41	32	2	8	15	0	39	52	189
15:15	16:15	1	39	17	1	6	30	1	23	65	183

Note: Site sketch is for illustrating traffic flows. Direction is indicative only, drawing is not to scale and not an exact streets configuration.

Graphic
Total
Light
Heavy

Intersection of Anderson Rd and Margaret St, Northmea
GPS

Date:	Tue 06/06/23
Weather:	Fine
Suburban:	Northmead
Customer:	McLaren

North:	Margaret St
East:	Anderson Rd
South:	N/A
West:	Anderson Rd

Survey	AM:	$7: 00$ AM-9:30 AM
Period	$\mathrm{PM}:$	$2: 30$ PM-6:00 PM
Traffic	$\mathrm{AM}:$	8:00 AM-9:00 AM
Peak	PM:	$4: 00$ PM-5:00 PM

Time		North Approach Margaret SE			East Approach Anderson R\Vest Approach Anderson R						Hourly Total	
Period Start	Period End	U	R	L	U	R	WB	U	EB	L	Hour	Peak
7:00	7:15	0	6	0	0	0	5	0	0	6	142	
7:15	7:30	1	9	1	0	2	18	0	2	4	174	
7:30	7:45	0	6	3	0	1	26	0	6	7	203	
7:45	8:00	0	7	3	0	2	18	0	4	5	212	
8:00	8:15	0	15	1	0	3	17	0	3	10	224	Peak
8:15	8:30	0	17	4	0	4	21	0	2	18	220	
8:30	8:45	1	8	4	0	6	22	1	5	11	183	
8:45	9:00	0	12	8	0	2	12	0	6	11		
9:00	9:15	1	13	5	0	4	8	0	8	6		
9:15	9:30	0	9	1	0	2	8	0	2	7		
14:30	14:45	0	4	2	0	2	7	0	8	13	173	
14:45	15:00	0	10	2	1	1	15	0	4	10	176	
15:00	15:15	0	19	2	0	1	12	0	4	5	170	
15:15	15:30	0	16	4	0	1	8	0	9	13	184	
15:30	15:45	0	8	2	0	3	8	1	5	12	176	
15:45	16:00	0	10	2	0	0	9	2	4	10	183	
16:00	16:15	0	13	3	0	3	14	1	11	12	193	Peak
16:15	16:30	0	12	3	0	3	11	0	6	8	173	
16:30	16:45	0	13	2	0	1	11	0	12	7	174	
16:45	17:00	0	10	3	0	2	10	0	11	11	174	
17:00	17:15	0	7	2	0	2	16	0	2	8	156	
17:15	17:30	0	7	2	0	0	12	0	9	14		
17:30	17:45	0	8	1	0	2	10	1	12	12		
17:45	18:00	0	3	1	0	2	3	1	7	12		

| Peak Time | | North Approach Margaret SEast Approach Anderson R(Vest Approach Anderson R | Peak | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Period Start | Period End | U | R | L | U | R | WB | U | EB | L | total |
| $8: 00$ | $9: 00$ | 1 | 52 | 17 | 0 | 15 | 72 | 1 | 16 | 50 | 224 |
| $16: 00$ | $17: 00$ | 0 | 48 | 11 | 0 | 9 | 46 | 1 | 40 | 38 | 193 |

TRANS TRAFFIC SURVEY
TURNING MOVEMENT SURVEY
Intersection of Anderson Rd and Windsor Rd, Northmead

| GPS | $-33.781983,150.996831$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Date: | Tue 06/06/23 |
| Weather: | Fine |
| Suburban: | Northmead |
| Customer: | McLaren |

Time		North Approach Windsor Rd				East Approach Anderson Rd				South Approach Windsor Rd				West Approach Club Access				Hourly Total	
Period Star	Period End	U	R	SB	L	U	R	WB	L	U	R	NB	L	U	R	EB	L	Hour	Peak
7:00	7:15	0	0	609	4	0	10	0	2	0	3	266	0	0	0	0	0	3755	
7:15	7:30	0	0	635	4	0	21	2	6	0	1	266	0	0	0	2	0	3773	Peak
7:30	7:45	0	0	663	5	0	25	2	7	0	2	267	0	0	0	4	0	3749	
7:45	8:00	0	0	647	7	0	18	0	5	0	2	268	0	0	2	0	0	3620	
8:00	8:15	0	0	599	5	0	25	0	5	0	8	270	0	0	0	0	0	3559	
8:15	8:30	0	0	600	13	0	23	1	8	0	8	260	0	0	0	0	0	3489	
8:30	8:45	0	0	586	7	0	25	2	4	0	8	214	0	0	0	0	0	3433	
8:45	9:00	0	0	595	8	0	19	0	4	0	7	255	0	0	0	0	0		
9:00	9:15	0	0	560	12	0	20	2	8	0	4	236	0	0	0	0	0		
9:15	9:30	0	0	580	6	0	15	0	4	0	4	248	0	0	0	0	0		
14:30	14:45	0	0	356	6	0	10	0	3	0	13	438	0	0	0	0	0	3658	
14:45	15:00	0	0	411	9	0	19	0	7	0	4	463	0	0	0	0	0	3870	
15:00	15:15	0	0	443	9	0	22	0	5	0	1	465	0	0	1	0	0	3902	
15:15	15:30	0	0	406	14	0	22	1	5	1	10	510	0	0	4	0	0	3974	
15:30	15:45	0	0	506	8	0	13	0	2	0	9	500	0	0	0	0	0	4040	
15:45	16:00	0	0	388	8	0	21	2	4	0	8	512	0	0	2	0	0	3985	
16:00	16:15	0	0	460	16	0	22	2	3	0	5	506	0	0	3	1	0	4102	Peak
16:15	16:30	0	0	471	9	0	18	3	1	0	4	533	0	0	0	0	0	4046	
16:30	16:45	0	0	408	12	0	22	1	3	0	4	530	0	0	2	1	0	4079	
16:45	17:00	0	0	473	16	0	21	0	1	0	9	540	1	0	1	0	0	4051	
17:00	17:15	0	0	425	7	0	17	1	2	0	5	504	0	0	1	0	0	4051	
17:15	17:30	0	0	527	17	0	14	1	1	0	5	507	0	0	0	0	0		
17:30	17:45	0	0	412	17	0	16	2	4	0	10	494	0	0	0	0	0		
17:45	18:00	0	0	532	16	0	10	0	2	0	4	498	0	0	0	0	0		

Peak Time		North Approach Windsor Rd				East Approach Anderson Rd				South Approach Windsor Rd				West Approach Club Access				Peak total
Period Star	Period End	U	R	SB	L	U	R	WB	L	U	R	NB	L	U	R	EB	L	
7:15	8:15	0	0	2544	21	0	89	4	23	0	13	1071	0	0	2	6	0	3773
16:00	17:00	0	0	1812	53	0	83	6	8	0	22	2109	1	0	6	2	0	4102

ANNEXURE C: SIDRA RESULTS (20 SHEETS)

MOVEMENT SUMMARY

∇ Site: 1 [(ExAM) Windsor Rd / Mary St (Site Folder: Existing)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Windsor Rd / Mary St
Existing AM Peak
Job No 220918
Site Category: Existing AM
Give-Way (Two-Way)

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
Two-Way Sign Control Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Tuesday, 1 August 2023 2:38:24 PM
Project: Z:\Jobs\2022\220918\MTE SIDRAl23 0718 - KL - LS Edits.sip9

MOVEMENT SUMMARY

∇ Site: 4 [(ExAM) Anderson Rd / Margaret St (Site Folder:
 Existing)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Anderson Rd / Margaret St
Existing AM Peak
Job No 220918
Site Category: Existing AM
Give-Way (Two-Way)

Vehicle Movement Performance															
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$		Mov Class	$\begin{array}{r} \text { Dem } \\ \text { F } \\ \text { [Total } \\ \text { veh/h } \end{array}$	$\begin{gathered} \text { nand } \\ \text { lows } \\ \text { HV] } \\ \% \end{gathered}$	Ar Fl Total veh/h	$\begin{aligned} & \text { rrival } \\ & \text { lows } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec \qquad	Level of Service	$\begin{array}{r} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{array}$	$\begin{gathered} \text { ck Of } \\ \text { ue } \\ \text { Dist] } \\ m \end{gathered}$	Prop. Que	$\begin{aligned} & \text { Eff. } \\ & \text { Stop } \\ & \text { Rate } \end{aligned}$	Aver. No. of Cycles	Aver. Speed km/h
East: Anderson Rd (E)															
5	T1	All MCs	76	1.4	76	1.4	0.049	0.0	LOS A	0.1	0.7	0.06	0.11	0.06	48.9
6	R2	All MCs	16	0.0	16	0.0	0.049	5.0	LOS A	0.1	0.7	0.06	0.11	0.06	47.9
Appr	ach		92	1.1	92	1.1	0.049	0.9	NA	0.1	0.7	0.06	0.11	0.06	48.7
North: Margaret St (N)															
7	L2	All MCs	18	0.0	18	0.0	0.060	4.6	LOS A	0.2	1.5	0.13	0.52	0.13	45.7
9	R2	All MCs	56	1.9	56	1.9	0.060	5.1	LOS A	0.2	1.5	0.13	0.52	0.13	43.5
Appr	ach		74	1.4	74	1.4	0.060	5.0	LOS A	0.2	1.5	0.13	0.52	0.13	44.2
West: Anderson Rd (W)															
10	L2	All MCs	54	2.0	54	2.0	0.038	4.6	LOS A	0.0	0.0	0.00	0.41	0.00	45.0
11	T1	All MCs	17	0.0	17	0.0	0.038	0.0	LOS A	0.0	0.0	0.00	0.41	0.00	46.7
Approach			71	1.5	71	1.5	0.038	3.5	NA	0.0	0.0	0.00	0.41	0.00	45.4
All Vehicles			236	1.3	236	1.3	0.060	2.9	NA	0.2	1.5	0.06	0.33	0.06	46.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
Two-Way Sign Control Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Tuesday, 1 August 2023 2:38:28 PM
Project: Z:\Jobs\2022l220918\MTE SIDRAI23 07 18-KL - LS Edits.sip9

MOVEMENT SUMMARY

∇ Site: 1 [(ExPM) Windsor Rd / Mary St (Site Folder: Existing)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Windsor Rd / Mary St
Existing PM Peak
Job No 220918
Site Category: Existing PM
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn Mov ID Class		$\begin{aligned} & \text { nand } \\ & \text { lows } \\ & \text { HV] } \\ & \% \end{aligned}$		rival lows HV] \%	Deg. Satn \qquad v/c	Aver. Delay \qquad sec	Level of Service	95\% Q [Veh. veh	$\begin{gathered} \text { ck Of } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que		Aver. No. of Cycles	Aver. Speed \qquad km/h
South: Windsor Rd (S)													
2 T1 All MCs	2137	2.7	2137	2.7	0.564	0.1	LOS A	0.4	2.7	0.01	0.01	0.01	59.5
3 R2 All MCs	1	0.0	1	0.0	0.564	352.9	LOS F	0.4	2.7	0.01	0.01	0.01	51.6
Approach	2138	2.7	2138	2.7	0.564	0.3	NA	0.4	2.7	0.01	0.01	0.01	59.5
East: Mary St (E)													
4 L2 All MCs	12	0.0	12	0.0	1.029	169.1	LOS F	2.2	15.7	1.00	1.02	1.19	14.3
6 R2 All MCs	1	0.0	1	0.0	1.029	65.4	LOS E	2.2	15.7	1.00	1.02	1.19	15.9
Approach	13		13		1.029	160.5	LOS F	2.2	15.7	1.00	1.02	1.19	14.4
North: Windsor Rd (N)													
7 L2 All MCs	17	0.0	17	0.0	0.479	5.7	LOS A	0.0	0.0	0.00	0.01	0.00	57.1
8 T1 All MCs	1786	5.5	1786	5.5	0.479	0.2	LOS A	0.0	0.0	0.00	0.01	0.00	59.6
Approach	1803	5.5	1803	5.5	0.479	0.2	NA	0.0	0.0	0.00	0.01	0.00	59.5
All Vehicles	3954	3.9	3954		1.029	0.8	NA	2.2	15.7	0.01	0.01	0.01	58.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
Two-Way Sign Control Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Tuesday, 1 August 2023 2:38:25 PM
Project: Z:\Jobs\2022\220918\MTE SIDRAl23 0718 - KL - LS Edits.sip9

MOVEMENT SUMMARY

∇ Site: 2 [(ExAM) Mary St / Margaret St (Site Folder: Existing)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

```
Mary St / Margaret St
Existing AM Peak
Job No 220918
Site Category: Existing AM
Give-Way (Two-Way)
```

Vehicle Movement Performance													
Mov Turn Mov ID Class	Dem Flo [Total veh/h		$\begin{array}{r} \text { Arı } \\ \text { Fl } \\ \text { [Total } \\ \text { veh/h } \end{array}$	rival lows HV] \%	Deg. Satn \qquad v/c	Aver. Delay \qquad sec	Level of Service		ck Of ue Dist] m	Prop. Que		Aver. No. of Cycles	Aver. Speed \qquad km/h
South: Margaret St (S)													
1 L2 All MCs	13	0.0	13	0.0	0.049	4.6	LOS A	0.2	1.2	0.12	0.53	0.12	45.7
3 R2 All MCs	49		49		0.049	4.8	LOS A	0.2	1.2	0.12	0.53	0.12	45.5
Approach	62	1.7	62	1.7	0.049	4.8	LOS A	0.2	1.2	0.12	0.53	0.12	45.5
East: Mary St (E)													
4 L2 All MCs	55	0.0	55	0.0	0.044	4.6	LOS A	0.0	0.0	0.00	0.36	0.00	46.8
5 T1 All MCs	27	0.0	27		0.044	0.0	LOS A	0.0	0.0	0.00	0.36	0.00	48.0
Approach	82	0.0	82	0.0	0.044	3.1	NA	0.0	0.0	0.00	0.36	0.00	47.2
West: Mary St (W)													
11 T1 All MCs	1	0.0	1	0.0	0.008	0.0	LOS A	0.0	0.3	0.18	0.48	0.18	46.9
12 R2 All MCs	13		13		0.008	4.9	LOS A	0.0	0.3	0.18	0.48	0.18	45.5
Approach	14		14		0.008	4.5	NA	0.0	0.3	0.18	0.48	0.18	45.6
All Vehicles	158	1.3	158	1.3	0.049	3.9	NA	0.2	1.2	0.06	0.43	0.06	46.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
Two-Way Sign Control Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Tuesday, 1 August 2023 2:38:26 PM
Project: Z:\Jobs\2022\220918\MTE SIDRAl23 0718 - KL - LS Edits.sip9

MOVEMENT SUMMARY

∇ Site: 2 [(ExPM) Mary St / Margaret St (Site Folder: Existing)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

```
Mary St / Margaret St
Existing PM Peak
Job No 220918
Site Category: Existing PM
Give-Way (Two-Way)
```

Vehicle Movement Performance													
Mov Turn Mov ID Class	Dem Flo [Total veh/h		$\begin{gathered} \text { Arr } \\ \text { Flc } \\ \text { [Total } \\ \text { veh/h } \end{gathered}$	rival lows HV] \%	Deg. Satn \qquad v/c	Aver. Delay \qquad sec	Level of Service		ck Of ue Dist] m	Prop. Que		Aver. No. of Cycles	Aver. Speed \qquad km/h
South: Margaret St (S)													
1 L2 All MCs	3	0.0	3	0.0	0.036	4.7	LOS A	0.1	0.8	0.14	0.53	0.14	45.7
3 R2 All MCs	41		41		0.036	4.8	LOS A	0.1	0.8	0.14	0.53	0.14	45.4
Approach	44		44		0.036	4.8	LOS A	0.1	0.8	0.14	0.53	0.14	45.4
East: Mary St (E)													
4 L2 All MCs	55		55	1.9	0.048	4.6	LOS A	0.0	0.0	0.00	0.33	0.00	46.9
5 T1 All MCs	34		34		0.048	0.0	LOS A	0.0	0.0	0.00	0.33	0.00	48.1
Approach	88		88		0.048	2.8	NA	0.0	0.0	0.00	0.33	0.00	47.4
West: Mary St (W)													
11 T1 All MCs	4		4	0.0	0.005	0.0	LOS A	0.0	0.2	0.17	0.31	0.17	47.9
12 R2 All MCs	5	0.0	5		0.005	4.9	LOS A	0.0	0.2	0.17	0.31	0.17	46.6
Approach	9	0.0	9		0.005	2.7	NA	0.0	0.2	0.17	0.31	0.17	47.1
All Vehicles	142	2.2	142		0.048	3.5	NA	0.1	0.8	0.05	0.39	0.05	46.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
Two-Way Sign Control Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Tuesday, 1 August 2023 2:38:26 PM
Project: Z:\Jobs\2022\220918\MTE SIDRAl23 0718 - KL - LS Edits.sip9

MOVEMENT SUMMARY

∇ Site: 3 [(ExAM) William St / Windermere Ave (Site Folder:
Existing)]
Output produced by SIDRA INTERSECTION Version: 9.1.3.210
William St / Windermere Ave
Existing AM Peak
Job No 220918
Site Category: Existing AM
Give-Way (Two-Way)

Vehicle Movement Performance															
Mov ID		Mov Class	Dem Fl [Total veh/h	mand ows HV] \%		rival ows HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service		ck Of e Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South: Mary St / William St (S)															
1	L2	All MCs	16	0.0	16	0.0	0.019	4.7	LOS A	0.1	0.5	0.14	0.51	0.14	45.7
3	R2	All MCs	11	0.0	11	0.0	0.019	5.1	LOS A	0.1	0.5	0.14	0.51	0.14	45.5
Appr	ach		26	0.0	26	0.0	0.019	4.8	LOS A	0.1	0.5	0.14	0.51	0.14	45.6
East: Windermere Ave (E)															
4	L2	All MCs	36	0.0	36	0.0	0.041	4.6	LOS A	0.0	0.0	0.00	0.25	0.00	47.4
5	T1	All MCs	43	0.0	43	0.0	0.041	0.0	LOS A	0.0	0.0	0.00	0.25	0.00	48.6
Approach			79	0.0	79	0.0	0.041	2.1	NA	0.0	0.0	0.00	0.25	0.00	48.1
West: Windermere Ave (W)															
11	T1	All MCs	55	5.8	55	5.8	0.054	0.0	LOS A	0.2	1.5	0.14	0.25	0.14	48.3
12	R2	All MCs	41	0.0	41		0.054	5.0	LOS A	0.2	1.5	0.14	0.25	0.14	46.9
Appr			96		96	3.3	0.054	2.1	NA	0.2	1.5	0.14	0.25	0.14	47.7
All V	icles		201	1.6	201	1.6	0.054	2.5	NA	0.2	1.5	0.09	0.28	0.09	47.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
Two-Way Sign Control Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Tuesday, 1 August 2023 2:38:27 PM
Project: Z:\Jobs\2022l220918\MTE SIDRAl23 07 18-KL - LS Edits.sip9

MOVEMENT SUMMARY

∇ Site: 3 [(ExPM) William St / Windermere Ave (Site Folder:
 Existing)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
William St / Windermere Ave
Existing PM Peak
Job No 220918
Site Category: Existing PM
Give-Way (Two-Way)

Vehicle Movement Performance															
Mov ID		Mov Class	Dem Fl [Total veh/h	mand ows HV] \%		rival ows HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service		ck Of e Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South: Mary St / William St (S)															
1	L2	All MCs	33		33	0.0	0.028	4.7	LOS A	0.1	0.8	0.12	0.50	0.12	45.7
3	R2	All MCs		14.3		14.3	0.028	5.3	LOS A	0.1	0.8	0.12	0.50	0.12	45.3
Appr	ach		40		40	2.6	0.028	4.8	LOS A	0.1	0.8	0.12	0.50	0.12	45.6
East: Windermere Ave (E)															
4	L2	All MCs	18	5.9	18	5.9	0.031	4.6	LOS A	0.0	0.0	0.00	0.16	0.00	47.8
5	T1	All MCs	41		41		0.031	0.0	LOS A	0.0	0.0	0.00	0.16	0.00	49.1
Approach			59	3.6	59	3.6	0.031	1.4	NA	0.0	0.0	0.00	0.16	0.00	48.7
West: Windermere Ave (W)															
11	T1	All MCs	68	3.1	68	3.1	0.051	0.0	LOS A	0.1	1.0	0.09	0.16	0.09	48.9
12	R2	All MCs	25		25		0.051	4.9	LOS A	0.1	1.0	0.09	0.16	0.09	47.5
Appr	ach		94		94		0.051	1.3	NA	0.1	1.0	0.09	0.16	0.09	48.5
All V	icles		193	2.7	193	2.7	0.051	2.1	NA	0.1	1.0	0.07	0.23	0.07	47.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
Two-Way Sign Control Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Tuesday, 1 August 2023 2:38:28 PM
Project: Z:\Jobs\2022l220918\MTE SIDRAl23 07 18-KL - LS Edits.sip9

MOVEMENT SUMMARY

∇ Site: 4 [(ExAM) Anderson Rd / Margaret St (Site Folder:
 Existing)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Anderson Rd / Margaret St
Existing AM Peak
Job No 220918
Site Category: Existing AM
Give-Way (Two-Way)

Vehicle Movement Performance															
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$		Mov Class	$\begin{array}{r} \text { Dem } \\ \text { F } \\ \text { [Total } \\ \text { veh/h } \end{array}$	$\begin{gathered} \text { nand } \\ \text { lows } \\ \text { HV] } \\ \% \end{gathered}$	Ar Fl Total veh/h	$\begin{aligned} & \text { rrival } \\ & \text { lows } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec \qquad	Level of Service	$\begin{array}{r} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{array}$	$\begin{gathered} \text { ck Of } \\ \text { ue } \\ \text { Dist] } \\ m \end{gathered}$	Prop. Que	$\begin{aligned} & \text { Eff. } \\ & \text { Stop } \\ & \text { Rate } \end{aligned}$	Aver. No. of Cycles	Aver. Speed km/h
East: Anderson Rd (E)															
5	T1	All MCs	76	1.4	76	1.4	0.049	0.0	LOS A	0.1	0.7	0.06	0.11	0.06	48.9
6	R2	All MCs	16	0.0	16	0.0	0.049	5.0	LOS A	0.1	0.7	0.06	0.11	0.06	47.9
Appr	ach		92	1.1	92	1.1	0.049	0.9	NA	0.1	0.7	0.06	0.11	0.06	48.7
North: Margaret St (N)															
7	L2	All MCs	18	0.0	18	0.0	0.060	4.6	LOS A	0.2	1.5	0.13	0.52	0.13	45.7
9	R2	All MCs	56	1.9	56	1.9	0.060	5.1	LOS A	0.2	1.5	0.13	0.52	0.13	43.5
Appr	ach		74	1.4	74	1.4	0.060	5.0	LOS A	0.2	1.5	0.13	0.52	0.13	44.2
West: Anderson Rd (W)															
10	L2	All MCs	54	2.0	54	2.0	0.038	4.6	LOS A	0.0	0.0	0.00	0.41	0.00	45.0
11	T1	All MCs	17	0.0	17	0.0	0.038	0.0	LOS A	0.0	0.0	0.00	0.41	0.00	46.7
Approach			71	1.5	71	1.5	0.038	3.5	NA	0.0	0.0	0.00	0.41	0.00	45.4
All Vehicles			236	1.3	236	1.3	0.060	2.9	NA	0.2	1.5	0.06	0.33	0.06	46.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
Two-Way Sign Control Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Tuesday, 1 August 2023 2:38:28 PM
Project: Z:\Jobs\2022l220918\MTE SIDRAI23 07 18-KL - LS Edits.sip9

MOVEMENT SUMMARY

∇ Site: 4 [(ExPM) Anderson Rd / Margaret St (Site Folder:
 Existing)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Anderson Rd / Margaret St
Existing PM Peak
Job No 220918
Site Category: Existing PM
Give-Way (Two-Way)

Vehicle Movement Performance															
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$		Mov Class	$\begin{array}{r} \text { Dem } \\ \text { F } \\ \text { [Total } \\ \text { veh/h } \end{array}$	$\begin{gathered} \text { nand } \\ \text { lows } \\ \text { HV] } \\ \% \end{gathered}$	Ar Fl Total veh/h	$\begin{aligned} & \text { rrival } \\ & \text { lows } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec \qquad	Level of Service	$\begin{array}{r} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{array}$	$\begin{gathered} \text { ck Of } \\ \text { ue } \\ \text { Dist] } \\ m \end{gathered}$	Prop. Que	$\begin{aligned} & \text { Eff. } \\ & \text { Stop } \\ & \text { Rate } \end{aligned}$	Aver. No. of Cycles	Aver. Speed km/h
East: Anderson Rd (E)															
5	T1	All MCs	48	2.2	48	2.2	0.031	0.0	LOS A	0.1	0.4	0.07	0.11	0.07	49.0
6	R2	All MCs	9	0.0	9	0.0	0.031	5.1	LOS A	0.1	0.4	0.07	0.11	0.07	47.9
Appr	ach		58	1.8	58	1.8	0.031	0.8	NA	0.1	0.4	0.07	0.11	0.07	48.7
North: Margaret St (N)															
7	L2	All MCs	12	0.0	12	0.0	0.051	4.7	LOS A	0.2	1.2	0.17	0.53	0.17	45.6
9	R2	All MCs	51	0.0	51	0.0	0.051	5.0	LOS A	0.2	1.2	0.17	0.53	0.17	43.4
Appr	ach		62	0.0	62	0.0	0.051	4.9	LOS A	0.2	1.2	0.17	0.53	0.17	43.9
West: Anderson Rd (W)															
10	L2	All MCs	40	5.3	40	5.3	0.044	4.6	LOS A	0.0	0.0	0.00	0.26	0.00	46.1
11	T1	All MCs	42	0.0	42	0.0	0.044	0.0	LOS A	0.0	0.0	0.00	0.26	0.00	47.9
Approach			82	2.6	82	2.6	0.044	2.2	NA	0.0	0.0	0.00	0.26	0.00	47.0
All Vehicles			202	1.6	202	1.6	0.051	2.7	NA	0.2	1.2	0.07	0.30	0.07	46.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
Two-Way Sign Control Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Tuesday, 1 August 2023 2:38:29 PM
Project: Z:\Jobs\2022l220918\MTE SIDRAI23 07 18-KL - LS Edits.sip9

MOVEMENT SUMMARY

目 Site: 5 [(ExAM) Windsor Rd / Anderson Rd (Site Folder:
 Existing)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Windsor Rd / Anderson Rd
Existing AM Peak
Job No 220918
Site Category: Existing AM
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=277$ seconds (Site User-Given Phase Times)

Vehicle Movement Performance															
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$		Mov Class	$\begin{array}{r} \text { Dem: } \\ \text { Flc } \\ \text { [Total }+ \\ \text { veh/h } \end{array}$	$\begin{aligned} & \text { nand } \\ & \text { lows } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{array}{r} \text { rival } \\ \text { lows } \\ \text { HV] } \\ \% \end{array}$	Deg. Satn v/c	Aver. Delay \qquad sec	Level of Service	Aver. Q [Veh. veh	ck Of e Dist] m	Prop. Que		Aver. No. of Cycles	Aver. Speed \qquad km/h
South: Windsor Rd (S)															
1	L2	All MCs	1		1		0.719	12.7	LOS A	17.1	128.7	0.41	0.38	0.41	32.9
2	T1	All MCs	1127	8.9	1127		* 0.719	7.1	LOS A	17.1	128.7	0.41	0.38	0.41	55.8
3	R2	All MCs	14		14		0.292	156.8	LOS F	1.2	8.2	1.00	0.70	1.00	12.2
Appro			1142		1142		0.719	8.9	LOS A	17.1	128.7	0.42	0.38	0.42	53.9
East: Anderson Rd (E)															
4	L2	All MCs	24		24		0.103	92.2	LOS F	1.0	6.8	0.92	0.71	0.92	22.4
5	T1	All MCs	4	0.0	4		* 0.775	103.0	LOS F	4.4	30.7	1.00	0.83	1.09	7.5
6	R2	All MCs	94		94		0.775	107.6	LOS F	4.4	30.7	1.00	0.83	1.09	16.5
Appro							0.775	104.4	LOS F	4.4	30.7	0.98	0.80	1.06	17.4
North: Windsor Rd (N)															
7	L2	All MCs	22		22		0.583	10.9	LOS A	16.3	117.4	0.39	0.37	0.39	46.4
8	T1	All MCs	2678		2678		0.583	5.3	LOS A	16.3	117.6	0.39	0.36	0.39	54.4
Appro			2700		2700		0.583	5.4	LOS A	16.3	117.6	0.39	0.36	0.39	54.3
West: Club Access (W)															
10	L2	All MCs	1	0.0	1	0.0	0.074	67.6	LOS E	0.4	3.1	0.95	0.66	0.95	15.0
11	T1	All MCs	6	0.0	6	0.0	0.074	65.3	LOS E	0.4	3.1	0.95	0.66	0.95	8.7
12	R2	All MCs		100 0		100 0	0.074	68.1	LOS E	0.4	3.1	0.95	0.66	0.95	17.9
Approach				22.2		22.2	0.074	66.2	LOS E	0.4	3.1	0.95	0.66	0.95	11.9
All Vehicles			3974		3974		0.775	9.6	LOS A	17.1	128.7	0.42	0.38	0.42	51.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab)
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Tuesday, 1 August 2023 2:38:30 PM
Project: Z:\Jobs\2022\220918IMTE SIDRAI23 07 18-KL - LS Edits.sip9

MOVEMENT SUMMARY

目 Site: 5 [(ExPM) Windsor Rd / Anderson Rd (Site Folder:
 Existing)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Windsor Rd / Anderson Rd
Existing PM Peak
Job No 220918
Site Category: Existing PM
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=147$ seconds (Site User-Given Phase Times)

Vehicle Movement Performance															
Mov ID	Turn	Mov Class		$\begin{aligned} & \text { nand } \\ & \text { lows } \\ & \text { HV] \| } \\ & \% \end{aligned}$		rival ows HV] \%	Deg. Satn v/c	Aver. Delay \qquad sec	Level of Service	Aver. Q [Veh. veh	$\begin{aligned} & \text { ck Of } \\ & \text { Dist] } \\ & \text { m } \end{aligned}$	Prop. Que		Aver. No. of Cycles	Aver. Speed \qquad km/h
South: Windsor Rd (S)															
1	L2	All MCs	1	0.0	1	0.0	0.666	8.6	LOS A	14.7	104.7	0.34	0.31	0.34	33.4
2	T1	All MCs	2220		2220		0.666	3.5	LOS A	14.7	104.7	0.34	0.31	0.34	56.7
3	R2	All MCs	23		23		* 0.146	74.6	LOS F	1.0	7.0	0.96	0.71	0.96	20.6
Appro			2244		2244		0.666	4.2	LOS A	14.7	104.7	0.34	0.31	0.34	55.8
East: Anderson Rd (E)															
4	L2	All MCs	8	0.0	8		0.023	71.8	LOS F	0.3	2.1	0.83	0.66	0.83	24.3
5	T1	All MCs	6	0.0	6	0.0	* 0.811	97.7	LOS F	4.5	31.5	1.00	0.92	1.24	6.6
6	R2	All MCs	87		87		0.811	102.3	LOS F	4.5	31.5	1.00	0.92	1.24	15.5
Appro			102				0.811	99.5	LOS F	4.5	31.5	0.99	0.89	1.20	15.7
North: Windsor Rd (N)															
7	L2	All MCs	56		56		0.703	16.3	LOS B	22.7	165.8	0.59	0.55	0.59	40.7
8	T1	All MCs	1907		1907		* 0.703	10.8	LOS A	22.7	166.3	0.59	0.55	0.59	49.6
Approa			1963		1963	5.2	0.703	10.9	LOS A	22.7	166.3	0.59	0.55	0.59	49.4
West: Club Access (W)															
10	L2	All MCs	1	0.0	1		0.084	2.7	LOS A	0.4	3.0	0.96	0.67	0.96	14.5
11	T1	All MCs	2	0.0	2		0.084	75.8	LOS F	0.4	3.0	0.96	0.67	0.96	8.6
12	R2	All MCs		16.7		16.7	0.084	78.3	LOS F	0.4	3.0	0.96	0.67	0.96	18.3
Approach				11.1	9	11.1	0.084	69.3	LOS E	0.4	3.0	0.96	0.67	0.96	16.1
All Vehicles			4319	3.7	4319	3.7	0.811	9.7	LOS A	22.7	166.3	0.47	0.43	0.48	50.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Tuesday, 1 August 2023 2:38:31 PM
Project: Z:\Jobs\2022\220918\MTE SIDRAl23 0718 - KL - LS Edits.sip9

MOVEMENT SUMMARY

∇ Site: 1 [(FutAM) Windsor Rd / Mary St (Site Folder: Future)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Windsor Rd / Mary St
Future AM Peak
Job No 220918
Site Category: Future AM
Give-Way (Two-Way)

Vehicle Movement Performance														
Mov Turn ID	Mov Class		and ows HV] \%	Ar veh/h	rival ows HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Qu } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	ck Of e Dist] m	Prop. Que		Aver. No. of Cycles	Aver. Speed km/h
South: Windsor Rd (S)														
$2 \quad \mathrm{~T} 1$	All MCs	1252	9.2	1252	9.2	0.358	0.0	LOS A	2.3	17.3	0.02	0.02	0.02	56.8
3 R 2	All MCs	1	0.0	1	0.0	0.358	3374.9	LOS F	2.3	17.3	0.05	0.05	0.05	47.2
Approach		1253	9.2	1253	9.2	0.358	2.9	NA	2.3	17.3	0.02	0.02	0.02	56.8
East: Mary St (E)														
4 L2	All MCs	8	0.0	8	0.0	1.031	232.0	LOS F	2.3	15.9	1.00	1.04	1.15	11.3
6 R2	All MCs	1	0.0	1	0.0	1.031	83.2	LOS F	2.3	15.9	1.00	1.04	1.15	12.8
Approach		9	0.0	9	0.0	1.031	215.4	LOS F	2.3	15.9	1.00	1.04	1.15	11.5
North: Windsor Rd (N)														
7 L2	All MCs	15	0.0	15	0.0	0.569	5.8	LOS A	0.0	0.0	0.00	0.01	0.00	57.0
8 T1	All MCs	2151	3.7	2151	3.7	0.569	0.3	LOS A	0.0	0.0	0.00	0.00	0.00	59.4
Approach		2165	3.7	2165	3.7	0.569	0.3	NA	0.0	0.0	0.00	0.00	0.00	59.4
All Vehicles		3428	5.7	3428	5.7	1.031	1.8	NA	2.3	17.3	0.01	0.01	0.01	57.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
Two-Way Sign Control Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Tuesday, 1 August 2023 2:38:32 PM
Project: Z:\Jobs\2022\220918IMTE SIDRAl23 0718 - KL - LS Edits.sip9

MOVEMENT SUMMARY

∇ Site: 1 [(FutPM) Windsor Rd / Mary St (Site Folder: Future)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Windsor Rd / Mary St
Future PM Peak
Job No 220918
Site Category: Future PM
Give-Way (Two-Way)

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
Two-Way Sign Control Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Tuesday, 1 August 2023 2:38:33 PM
Project: Z:\Jobs\2022\220918IMTE SIDRAl23 0718 - KL - LS Edits.sip9

MOVEMENT SUMMARY

∇ Site: 2 [(FutAM) Mary St / Margaret St (Site Folder: Future)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Mary St / Margaret St
Future AM Peak
Job No 220918
Site Category: Future AM
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn Mov ID Class	Dem Fl [Total veh/h	$\begin{aligned} & \text { nand } \\ & \text { lows } \\ & \text { HV] } \\ & \% \end{aligned}$	$\begin{array}{r} \text { Arı } \\ \text { Fl } \\ \text { [Total } \\ \text { veh/h } \end{array}$	rival lows HV] \%	Deg. Satn \qquad v/c	Aver. Delay \qquad sec	Level of Service	95\% Q [Veh. veh	$\begin{gathered} \text { ck Of } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que		Aver. No. of Cycles	Aver. Speed \qquad km / h
South: Margaret St (S)													
1 L2 All MCs	13	0.0	13	0.0	0.066	4.6	LOS A	0.2	1.6	0.15	0.53	0.15	45.6
3 R2 All MCs	68	1.5	68	1.5	0.066	4.9	LOS A	0.2	1.6	0.15	0.53	0.15	45.4
Approach	81	1.3	81	1.3	0.066	4.9	LOS A	0.2	1.6	0.15	0.53	0.15	45.5
East: Mary St (E)													
4 L2 All MCs	85	0.0	85	0.0	0.060	4.6	LOS A	0.0	0.0	0.00	0.40	0.00	46.6
5 T1 All MCs	27	0.0	27	0.0	0.060	0.0	LOS A	0.0	0.0	0.00	0.40	0.00	47.7
Approach	112	0.0	112	0.0	0.060	3.5	NA	0.0	0.0	0.00	0.40	0.00	46.9
West: Mary St (W)													
11 T1 All MCs	12	0.0	12	0.0	0.015	0.0	LOS A	0.1	0.5	0.19	0.30	0.19	48.1
12 R2 All MCs	13		13	8.3	0.015	5.2	LOS A	0.1	0.5	0.19	0.30	0.19	46.6
Approach	25		25		0.015	2.6	NA	0.1	0.5	0.19	0.30	0.19	47.3
All Vehicles	219		219		0.066	3.9	NA	0.2	1.6	0.08	0.44	0.08	46.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
Two-Way Sign Control Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Tuesday, 1 August 2023 2:38:34 PM
Project: Z:\Jobs\2022\220918\MTE SIDRAl23 0718 - KL - LS Edits.sip9

MOVEMENT SUMMARY

∇ Site: 2 [(FutPM) Mary St / Margaret St (Site Folder: Future)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Mary St / Margaret St
Future PM Peak
Job No 220918
Site Category: Future PM
Give-Way (Two-Way)

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
Two-Way Sign Control Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Tuesday, 1 August 2023 2:38:35 PM
Project: Z:\Jobs\2022\220918\MTE SIDRAl23 0718 - KL - LS Edits.sip9

MOVEMENT SUMMARY

∇ Site: 3 [(FutAM) William St / Windermere Ave (Site Folder:

Future)]
Output produced by SIDRA INTERSECTION Version: 9.1.3.210
William St / Windermere Ave
Future AM Peak
Job No 220918
Site Category: Future AM
Give-Way (Two-Way)

Vehicle Movement Performance															
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$		Mov Class		mand lows HV] [\qquad		rival ows HV] \qquad	Deg. Satn v/c	Aver. Delay sec	Level of Service		ck Of e Dist] m	Prop. Que	$\begin{aligned} & \text { Eff. } \\ & \text { Stop } \\ & \text { Rate } \end{aligned}$	Aver. No. of Cycles	Aver. Speed km/h
South: Mary St / William St (S)															
1	L2	All MCs	16	0.0	16	0.0	0.026	4.7	LOS A	0.1	0.6	0.15	0.51	0.15	45.6
3	R2	All MCs	18	0.0	18	0.0	0.026	5.1	LOS A	0.1	0.6	0.15	0.51	0.15	45.4
Appr	ach		34	0.0	34	0.0	0.026	4.9	LOS A	0.1	0.6	0.15	0.51	0.15	45.5
East: Windermere Ave (E)															
4	L2	All MCs	43	0.0	43	0.0	0.045	4.6	LOS A	0.0	0.0	0.00	0.27	0.00	47.3
5	T1	All MCs	43	0.0	43	0.0	0.045	0.0	LOS A	0.0	0.0	0.00	0.27	0.00	48.5
Approach			87	0.0	87	0.0	0.045	2.3	NA	0.0	0.0	0.00	0.27	0.00	47.9
West: Windermere Ave (W)															
11	T1	All MCs	55	5.8	55	5.8	0.054	0.0	LOS A	0.2	1.5	0.15	0.26	0.15	48.3
12	R2	All MCs	41	0.0	41	0.0	0.054	5.0	LOS A	0.2	1.5	0.15	0.26	0.15	46.9
Appr	ach		96	3.3	96	3.3	0.054	2.2	NA	0.2	1.5	0.15	0.26	0.15	47.7
All V	icles		216	1.5	216	1.5	0.054	2.6	NA	0.2	1.5	0.09	0.30	0.09	47.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
Two-Way Sign Control Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Tuesday, 1 August 2023 2:38:35 PM
Project: Z:\Jobs\2022l220918\MTE SIDRAl23 07 18-KL - LS Edits.sip9

MOVEMENT SUMMARY

∇ Site: 3 [(FutPM) William St / Windermere Ave (Site Folder:

Future)]
Output produced by SIDRA INTERSECTION Version: 9.1.3.210
William St / Windermere Ave
Future PM Peak
Job No 220918
Site Category: Future PM
Give-Way (Two-Way)

Vehicle Movement Performance															
Mov ID		Mov Class		and ows HV] \%		rival ows HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% Q [Veh. veh	ck Of e Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South: Mary St / William St (S)															
1	L2	All MCs	33	0.0	33	0.0	0.033	4.7	LOS A	0.1	0.9	0.13	0.51	0.13	45.7
3	R2	All MCs	14		14	7.6	0.033	5.2	LOS A	0.1	0.9	0.13	0.51	0.13	45.4
Appr	ach		47	2.3	47	2.3	0.033	4.8	LOS A	0.1	0.9	0.13	0.51	0.13	45.6
East: Windermere Ave (E)															
4	L2	All MCs	26	4.1	26	4.1	0.036	4.6	LOS A	0.0	0.0	0.00	0.21	0.00	47.6
5	T1	All MCs	41	2.6	41		0.036	0.0	LOS A	0.0	0.0	0.00	0.21	0.00	48.8
Approach			67	3.2	67	3.2	0.036	1.8	NA	0.0	0.0	0.00	0.21	0.00	48.3
West: Windermere Ave (W)															
11	T1	All MCs	68	3.1	68	3.1	0.051	0.0	LOS A	0.1	1.0	0.09	0.17	0.09	48.9
12	R2	All MCs	25	0.0	25	0.0	0.051	5.0	LOS A	0.1	1.0	0.09	0.17	0.09	47.5
Appr	ach		94	2.2	94	2.2	0.051	1.3	NA	0.1	1.0	0.09	0.17	0.09	48.5
All V	icles		207	2.5	207	2.5	0.051	2.3	NA	0.1	1.0	0.07	0.26	0.07	47.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
Two-Way Sign Control Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Tuesday, 1 August 2023 2:38:36 PM
Project: Z:\Jobs\2022l220918\MTE SIDRAl23 07 18-KL - LS Edits.sip9

MOVEMENT SUMMARY

∇ Site: 4 [(FutAM) Anderson Rd / Margaret St (Site Folder:

Future)]
Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Anderson Rd / Margaret St
Future AM Peak
Job No 220918
Site Category: Future AM
Give-Way (Two-Way)

Vehicle Movement Performance															
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$		Mov Class		$\begin{gathered} \text { nand } \\ \text { lows } \\ \text { HV] [} \\ \% \end{gathered}$		rival ows HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service			Prop. Que	$\begin{aligned} & \text { Eff. } \\ & \text { Stop } \\ & \text { Rate } \end{aligned}$	Aver. No. of Cycles	Aver. Speed km/h
East: Anderson Rd (E)															
5	T1	All MCs	76	1.4	76	1.4	0.054	0.0	LOS A	0.1	1.0	0.09	0.15	0.09	48.5
6	R2	All MCs	23	0.0	23	0.0	0.054	5.1	LOS A	0.1	1.0	0.09	0.15	0.09	47.6
Appr			99	1.1	99	1.1	0.054	1.2	NA	0.1	1.0	0.09	0.15	0.09	48.2
North: Margaret St (N)															
7	L2	All MCs	25	0.0	25	0.0	0.086	4.6	LOS A	0.3	2.1	0.13	0.52	0.13	45.7
9	R2	All MCs	79		79	1.3	0.086	5.1	LOS A	0.3	2.1	0.13	0.52	0.13	43.5
Appr			104	1.0	104	1.0	0.086	5.0	LOS A	0.3	2.1	0.13	0.52	0.13	44.2
West: Anderson Rd (W)															
10	L2	All MCs	65	1.6	65	1.6	0.044	4.6	LOS A	0.0	0.0	0.00	0.42	0.00	44.9
11	T1	All MCs	17	0.0	17	0.0	0.044	0.0	LOS A	0.0	0.0	0.00	0.42	0.00	46.5
Approach			82	1.3	82	1.3	0.044	3.6	NA	0.0	0.0	0.00	0.42	0.00	45.2
All Vehicles			285	1.1	285	1.1	0.086	3.3	NA	0.3	2.1	0.08	0.37	0.08	45.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
Two-Way Sign Control Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Tuesday, 1 August 2023 2:38:37 PM
Project: Z:\Jobs\2022l220918\MTE SIDRAl23 07 18-KL - LS Edits.sip9

MOVEMENT SUMMARY

∇ Site: 4 [(FutPM) Anderson Rd / Margaret St (Site Folder: Future)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Anderson Rd / Margaret St
Future PM Peak
Job No 220918
Site Category: Future PM
Give-Way (Two-Way)

Vehicle Movement Performance															
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$		Mov Class		and ows HV] \%		rival ows HV] \qquad	Deg. Satn v/c	Aver. Delay sec	Level of Service		ck Of e Dist] m	Prop. Que	$\begin{aligned} & \text { Eff. } \\ & \text { Stop } \\ & \text { Rate } \end{aligned}$	Aver. No. of Cycles	Aver. Speed
East: Anderson Rd (E)															
5	T1	All MCs	48	2.2	48	2.2	0.035	0.0	LOS A	0.1	0.7	0.10	0.16	0.10	48.4
6	R2	All MCs	16	0.0	16	0.0	0.035	5.1	LOS A	0.1	0.7	0.10	0.16	0.10	47.5
Appr	ach		65	1.6	65	1.6	0.035	1.3	NA	0.1	0.7	0.10	0.16	0.10	48.1
North: Margaret St (N)															
7	L2	All MCs	18	0.0	18	0.0	0.072	4.7	LOS A	0.2	1.7	0.18	0.53	0.18	45.6
9	R2	All MCs	70	0.0	70	0.0	0.072	5.0	LOS A	0.2	1.7	0.18	0.53	0.18	43.4
Approach			88	0.0	88	0.0	0.072	5.0	LOS A	0.2	1.7	0.18	0.53	0.18	44.0
West: Anderson Rd (W)															
10	L2	All MCs	50	4.2	50	4.2	0.049	4.6	LOS A	0.0	0.0	0.00	0.29	0.00	45.8
11	T1	All MCs	42	0.0	42	0.0	0.049	0.0	LOS A	0.0	0.0	0.00	0.29	0.00	47.6
Approach			92	2.3		2.3	0.049	2.5	NA	0.0	0.0	0.00	0.29	0.00	46.6
All Vehicles			245		245		0.072	3.1	NA	0.2	1.7	0.09	0.34	0.09	46.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
Two-Way Sign Control Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Tuesday, 1 August 2023 2:38:38 PM
Project: Z:\Jobs\2022l220918\MTE SIDRAI23 07 18-KL - LS Edits.sip9

MOVEMENT SUMMARY

Site: 5 [(FutAM) Windsor Rd / Anderson Rd (Site Folder:
 Future)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Windsor Rd / Anderson Rd
Future AM Peak
Job No 220918
Site Category: Future AM
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=271$ seconds (Site Optimum Cycle Time - Minimum Delay)

Vehicle Movement Performance															
Mov ID	Turn	Mov Class		and ows HV]		$\begin{aligned} & \text { Arrival } \\ & \text { Flows } \\ & \text { I HV] } \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. [Q veh. veh		Prop. Que	$\begin{aligned} & \text { Eff. } \\ & \text { Stop } \\ & \text { Rate } \end{aligned}$	Aver. No. of Cycles	Aver. Speed km/h
South: Windsor Rd (S)															
1	L2	All MCs	1	0.0	1	0.0	0.752	17.3	LOS B	21.6	163.0	0.51	0.47	0.51	31.8
2	T1	All MCs	1127	8.9	1127	8.9	* 0.752	11.7	LOS A	21.6	163.0	0.51	0.47	0.51	53.9
3	R2	All MCs	25	0.0	25	0.0	* 0.522	157.1	LOS F	2.1	14.8	1.00	0.73	1.00	12.3
Appr	ach		1153	8.7	1153	8.7	0.752	14.9	LOS B	21.6	163.0	0.52	0.47	0.52	50.9
East: Anderson Rd (E)															
4	L2	All MCs	36	0.0	36	0.0	0.140	96.6	LOS F	1.3	9.3	0.92	0.72	0.92	22.9
5	T1	All MCs	4	0.0	4	0.0	* 0.812	109.5	LOS F	5.0	35.3	1.00	0.85	1.12	7.5
6	R2	All MCs	105		105	1.0	0.812	114.1	LOS F	5.0	35.3	1.00	0.85	1.12	16.5
Appr	ach		145			0.7	0.812	109.7	LOS F	5.0	35.3	0.98	0.82	1.07	17.8
North: Windsor Rd (N)															
7	L2	All MCs	22	0.0	22	0.0	0.608	12.8	LOS A	18.8	135.5	0.46	0.43	0.46	44.3
8	T1	All MCs	2678	3.3	2678	3.3	* 0.608	7.2	LOS A	18.9	135.7	0.46	0.43	0.46	52.6
Approach			2700	3.2	2700	3.2	0.608	7.3	LOS A	18.9	135.7	0.46	0.43	0.46	52.6
West: Club Access (W)															
10	L2	All MCs	1	0.0		0.0	0.067	64.7	LOS E	0.4	3.1	0.94	0.65	0.94	15.4
11	T1	All MCs	60.0			0.0	0.067	62.4	LOS E	0.4	3.1	0.94	0.65	0.94	9.0
	R2	All MCs	2100.		$\begin{array}{r} 2100 \\ 0 \\ \hline \end{array}$		0.067	65.6	LOS E	0.4	3.1	0.94	0.65	0.94	18.4
Appr	ach		922.2		922.2		0.067	63.3	LOS E	0.4	3.1	0.94	0.65	0.94	12.3
All Ve	hicles		40084.840084 .8				0.812	13.3	LOS A	21.6	163.0	0.50	0.46	0.50	49.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Tuesday, 1 August 2023 2:38:39 PM
Project: Z:IJobsL2022l220918IMTE SIDRA123 07 18-KL - LS Edits.sip9

MOVEMENT SUMMARY

目 Site: 5 [(FutPM) Windsor Rd / Anderson Rd (Site Folder:
 Future)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Windsor Rd / Anderson Rd
Future PM Peak
Job No 220918
Site Category: Future PM
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=147$ seconds (Site User-Given Phase Times)

Vehicle Movement Performance															
Mov ID	Turn	Mov Class	Dem Flo [Total veh/h	mand ows HV] \%		rival lows HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. \qquad [Veh. veh	ck Of le Dist] m	Prop. Que		Aver. No. of Cycles	Aver. Speed km/h
South: Windsor Rd (S)															
1	L2	All MCs	1		1	0.0	0.667	8.6	LOS A	14.7	105.0	0.34	0.31	0.34	33.4
2	T1	All MCs	2220	2.4	2220		0.667	3.5	LOS A	14.7	105.0	0.34	0.31	0.34	56.6
3	R2	All MCs	33		33		* 0.207	75.1	LOS F	1.4	10.0	0.96	0.73	0.96	20.5
Appro			2254	2.4	2254		0.667	4.5	LOS A	14.7	105.0	0.35	0.31	0.35	55.5
East: Anderson Rd (E)															
4	L2	All MCs	18		18		0.050	77.5	LOS F	0.6	4.5	0.84	0.69	0.84	24.1
5	T1	All MCs	6	0.0	6	0.0	* 0.924	113.5	LOS F	5.3	37.4	1.00	1.03	1.45	6.2
6	R2	All MCs	97				0.924	118.1	LOS F	5.3	37.4	1.00	1.03	1.45	14.3
Appro			122		122		0.924	111.8	LOS F	5.3	37.4	0.98	0.98	1.36	15.1
North: Windsor Rd (N)															
7	L2	All MCs	56		56		0.703	16.3	LOS B	22.7	165.8	0.59	0.55	0.59	40.7
8	T1	All MCs	1907		1907		* 0.703	10.8	LOS A	22.7	166.3	0.59	0.55	0.59	49.6
Appro			1963	5.2	1963		0.703	10.9	LOS A	22.7	166.3	0.59	0.55	0.59	49.4
West: Club Access (W)															
10	L2	All MCs	1	0.0	1	0.0	0.084	2.5	LOS A	0.4	3.0	0.96	0.67	0.96	14.5
11	T1	All MCs	2	0.0	2	0.0	0.084	75.8	LOS F	0.4	3.0	0.96	0.67	0.96	8.3
12	R2	All MCs		16.7		16.7	0.084	78.2	LOS F	0.4	3.0	0.96	0.67	0.96	18.2
Approach				11.1	9	11.1	0.084	69.2	LOS E	0.4	3.0	0.96	0.67	0.96	16.0
All Vehicles			4349	3.7	4349	3.7	0.924	10.6	LOS A	22.7	166.3	0.48	0.44	0.49	50.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Tuesday, 1 August 2023 2:38:40 PM
Project: Z:\Jobs\2022\220918\MTE SIDRAl23 0718 - KL - LS Edits.sip9

ANNEXURE D: TCS PLANS
(1 SHEET)

ANNEXURE F: QUEUING ANALYSIS
(1 SHEET)

Multi-Server Queue Worksheet

Service Bays	24	Arrival Rate (vehicles/hour)	32	Wait Time in Each Bay (seconds)	496
Vehicles/Second IN	0.008888889	Vehicles/Second OUT (per bay)	0.002016129		
P0	0.012168692	rho	4.408888889	rho (single bay system assumed)	0.1837

n	1st Term	Pn	$P(>=n)$
0	1	1.22\%	98.78\%
1	4.40889	5.37\%	93.42\%
2	9.71915	11.83\%	81.59\%
3	14.2836	17.38\%	64.21\%
4	15.7436	19.16\%	45.05\%
5	13.8824	16.89\%	28.16\%
6	10.201	12.41\%	15.75\%
7	6.42501	7.82\%	7.93\%
8	3.54089	4.31\%	3.62\%
9	1.7346	2.11\%	1.51\%
10	0.76477	0.93\%	0.58\%
11	0.30652	0.37\%	0.20\%
12	0.11262	0.14\%	0.07\%
13	0.03819	0.05\%	0.02\%
14	0.01203	0.01\%	0.01\%

$\left.\begin{array}{|c|c|}\hline \text { Percentile } & \text { Number of Vehicles in System }\end{array} \begin{array}{c}\text { Number } \\ \text { of } \\ \text { Vehicles } \\ \text { Queued }\end{array}\right\}$

ANNEXURE G: SWEPT PATH TESTING (5 SHEETS)

AUSTRALIAN STANDARD $85^{\text {TH }}$ PERCENTILE SIZE VEHICLE (B85)

AUSTRALIAN STANDARD 99.8 ${ }^{\text {TH }}$ PERCENTILE SIZE VEHICLE (B99)
Blue - Tyre Path
Green - Vehicle Body
Red - 300mm Clearance
Tested @ 5-km/h internally; 10-km/h on public roads.

B85 / B99 TWO-WAY PASSING AT THE VEHICLE CROSSOVER Successful

B85 / B99 TWO-WAY PASSING ALONG BASEMENT RAMP Successful

B85 ENTRY / EXIT FROM SPACE 13
Successful - 2 manoeuvres REVERSE IN / 1 manoeuvre FORWARD OUT

B85 ENTRY / EXIT FROM SPACE 8
Successful - 2 manoeuvres REVERSE IN / 1 manoeuvre FORWARD OUT

